Development and Production of Second Generation High-Tc Superconducting Tapes in SuperOx and First Tests of Model Devices

Sergey Lee, Valery Petrykin
SuperOx Japan LLC, Tokyo, Japan

Sergey Samoilenkov, Andrey Kaul, Andrey Vavilov
ZAO SuperOx, Moscow, Russia

Vitaliy Vysotsky, Sergey Fetisov
Russian Cable Scientific R&D Institute (VNIIKP), Moscow, Russia
SuperOx is a 100% privately owned company with about 30 employees.

The R&D core of the company graduated from Chemistry and Material Science Departments of Moscow State University and had the experience in HTS since late 80’s - early 90’s.
SuperOx (Moscow)

MSU → Technopark “Slava”

Chemical processes
- solution deposition (MOD & SDP),
- MOCVD,
- electropolishing,
- copper deposition,
- quality testing,
- customization

> 850 sqm
➢ 20 employees
SuperOx coated conductor status in 2012:
Non-magnetic Ni-Cr-W RABiTS;
Chemically deposited buffer architectures.

Buffer architectures: CeO$_2$/SrF$_2$/MgO, BaZrO$_3$/MgO, La$_2$Zr$_2$O$_7$
SuperOx coated conductor status in 2012: MOCVD YBCO results
11 March 2011 – Decision to start the new Company in Japan

July 2011 - application of documents for Company registration

Sept 2011 – first employment contract

Oct. 2011 – design and placing purchase order for manufacturing equipment

Dec. 2011 – enter Sagamihara Incubation Center (new building SIC-3)

April 2012 – completed installation of main equipment
SuperOx Japan LLC (Tokyo)
Sagamihara Incubation Center SIC-3 (Kanagawa)

Physical vapor deposition processes
- RF & pulsed DC magnetron sputtering
- Ion Beam Assisted Deposition (IBAD)
- Pulsed Laser Deposition (PLD)
- DC Magnetron Ag sputtering
- Critical current measurements
 (reel-to-reel contactless, transport Ic)

> 220 sqm
5 employees
Ion Beam Assisted Deposition + magnetrons

IBAD-MgO

RF and pulsed DC 2 kW sputtering
ex-situ RHEED and QCM control
22x6 cm ion gun
Reels capacity >1.5 km
T up to 900°C
Speed up to 200 m/h

The same machine was used for deposition of all buffer layers with very short maintain time in between different processing stages
(Overall processing speed 20m/h)

IBAD-MgO
epi-MgO
Pulsed Laser Deposition of LMO, epi-MgO, RE-CeO2 & RE-123

Dual chamber PLD system with 130 W LEAP excimer laser

200 Hz, 650 mJ
Best price/pulse ratio

Reel capacity over 1 km

Processing speed of buffers 50-100m/h
HTS films 15-50m/h
Operation time 20h/day
Typical example of buffers and 2G HTS wire architecture

- **Epitaxial layers**
 - CeO$_2$:RE
 - LaMnO$_3$
 - epi - MgO
 - IBAD - MgO

- **Amorphous layers**
 - Y$_2$O$_3$
 - Al$_2$O$_3$
 - Hastelloy

[Graph showing normalized intensities over time]
SuperOx 2G wire Architecture

1. Hastelloy
2. Al₂O₃
3. LaMnO₃
4. IBAD - MgO
5. CeO₂:RE
6. High - Tc superconductor
7. Ag

Deposition Methods:
- RF reactive or nonreactive sputtering (50 nm)
- Cold rolled, annealed, electro polished (60-100 microns)
- Dual PLD Chamber system
- Single Chamber
- DC sputtering (1-2 microns)
- PLD-2 (1-3 microns) at T2
- PLD-1 (100-200 nm) at T1
- RF sputtering-2 (30-50 nm) at T1
- Ion beam assisted deposition with RF sputtering 5-7 nm
- RF sputtering-2 (30-50 nm) at T1
SuperOx Buffer Architecture

RE-doping in CeO2, suppression <111>
Growth, very wide processing window
Speed of 50m/h at a 50% laser power
SuperOx:
Hastelloy C276 Electropolishing

Present operation: 25 m/h
Possible throughput upgrade: 100 m/h

Original
RMS (40x40 um): 22 nm
RMS (5x5 um): 15 nm

Electropolished
RMS (5x5 um): 0.7 nm
Superox 2G HTS wires on electropolished substrates from different Hastelloy suppliers
Solution Deposition Planarization (SDP) of Hastelloy tapes

Nanocrystalline Y_2O_3 layer particle size: 10-15 nm

Smoothing out of major roughness after the fourth coat

Hastelloy
RMS:
16 nm (5x5 um)
22 nm (40x40 um)

SDP layer
RMS:
1.0 nm (5x5 um)
4.5 nm (40x40 um)

Currents up to 350 A demonstrated

More details on Wednesday at Poster 3P-WT1-02
Overcoming 300 A/cm on 100 m

Single piece length >200 m

Ic >120 A on 4 mm

Overcoming 300 A/cm on 100 m

Ic =550 A/12mm

Ic >120 A on 4 mm
Product

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Length</td>
<td>50 – 200 meters</td>
</tr>
<tr>
<td>Tape Thickness</td>
<td>60 – 100 µm</td>
</tr>
<tr>
<td>Tape width</td>
<td>4 mm</td>
</tr>
<tr>
<td></td>
<td>12mm</td>
</tr>
<tr>
<td>Critical Current @ 77K, s.f.</td>
<td>100-150 A</td>
</tr>
<tr>
<td></td>
<td>250-500 A</td>
</tr>
<tr>
<td>Current Uniformity</td>
<td>±10%</td>
</tr>
<tr>
<td></td>
<td>±10%</td>
</tr>
</tbody>
</table>

Customization:
- Variable silver thickness
- Variable copper thickness
- Lamination
- Insulation
- Artificial pinning centers
- Joints
Power Cables

4 mm copper-plated ~80-120 A HTS wire

2013: First two prototype **3 kA-4.5kA** cable are built and tested by leading Russian Cable Institute (VNIIKP)

Graph 1:
- **Outer layer**: \(I_c = 4.36 \text{ kA}, n = 18.6 \)
- **Inner layer**: \(I_c = 4.45 \text{ kA}, n = 11.6 \)

Graph 2:
- **Total current, kA**
- **Electrical field, \(\mu \text{V/cm} \)**

Graph 3:
- **Losses (W/m/tape)**
 - **SuperOx cables**
 - **first**
 - **second**

1P-LS1-13 Poster
ACKNOWLEDGMENTS

1. Investor and managing companies (FinEx Plus and IFS Managers)

2. Advance Optic and Vacuum company (AOV, Japan)

3. Sagamihara Incubation Center (SIC-3, Kanagawa)

4. Tokyo Zeikei Group

5. Hirata and partners Co

6. Colleagues from MSU, ISTEC

7. iBeam Materials (USA) – Dr. Vlad Matias

8. SuNAM (Korea) – Dr.S-H.Moon